Solutions for Stat 512 — Take home exam 111
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1+ <”1) Y 22
)

Solution: (Hint: use transformation technique)

1. If Y ~ F, +,, then prove:
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2. Assume now that the amount of fill dispensed by the bottling machine is exponentially distributed with 5 = 2,
thatis Y1,...,Y, ~ Exp(2).



a. What is the asymptotic distribution of Y when n = 3? Using the standard normal table to find out P|Y —2| <
3. (10 pts)
(Hint: Using CLT; asymptotic distribution means the limiting distribution, that is, the distribution when
n — 00).

b. Obtain the exact distribution of Y using MGF technique. Is this a common distribution that you’ve seen
before? (10 pts)

Solution:

Y -2 _
T 4N (0, 1) which implies the asymptotic distribution for Y is

3

Suppose CLT can be applied here, then
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N(2,5). Now, PIY —2| <3 = P(-1 <V < ~ P(-26 < Z <

2.60) = 1 — 2P(Z < —2.6) = 1 — 2% 0.0047 = 0.9906.

The MGF of Y is:
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Hence, Y ~ gamma(n, é) where 5 = 2 in this question.
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3. The flow of water through soil depends on, among other things, the porosity (volume proportion of voids) of
the soil. To compare two types of sandy soil, n; = 50 measurements are to be taken on the porosity of soil A
and ny = 100 measurements are to be taken on the porosity of soil B. Assume that 07 = 0.01 and 03 = 0.02
. Population means for the two types of soil are 1, uo. Denote the samples for the soil A be X1, ..., X5, the
samples for the soil B be Y7, ..., Yig0.

a. What is the asymptotic distribution for X — Y? (10 pts)

b. What is the probability that sample variance of soil A is at least twice as large as the sample variance of soil
B? (You do not need to find out the exact value, here is the format of your final answer: P(Fi520 > (<)10))

(10 pts)

solution:
a.

e e = . 0.01
Asymptotic distribution for X is N (p1, W)

— 0.02
Asymptotic distribution for Y is N (uz, ﬁ) based on CLT.
_ _ S 0.04

Since Xs are independent with Y;'s, X is independent with Y. Hence, it is clear that X —Y AN (11— p2, 1—00)

P(S>293) =P (gﬁ > 2)
2
_ <s%/a% N 2/0%)
S3/o3 ~ 1/o3
= P(Fi999 > 4)
~ 24 %1077

>k s ok sk sk s sk sk sk sk sk st s sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk st s sk sk sk sl sk sk sk sk sk sk sk sk sk sk sk sk sk skoskosk ok

Y
4. Suppose Y follows a binomial distribution with parameter n and p, then — is an unbiased estimator of p. Now,

Y Y
we want to estimate the variance of Y which is np(1 — p), we proposed a new estimator: n () (1 — > .
n n



a. Show that the proposed estimator for the variance of Y is biased. (10 pts)

b. Adjust the estimator so that the new estimator is an unbiased estimator of np(1 — p). (10 pts)

Solution:
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That means, the proposed estimator is biased.
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From part (a), E(p) = p(1—p)(n—1). That implies £ (nlﬁ) = np(1—p). So r p= r () (1 - =
n— n

is unbiased for the variance of Y.
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5. Suppose that Y7, ...,Y,, denote a random sample of size n from a population with an exponential distribution
exp(B). Y1) = min(Y1,...,Y,) denotes the smallest-order ststistic.

a. Show that Bl = nY(y) is an unbiased estimator for B. (10 pts)
b. Show that 32 =Y is also an unbiased estimator for 3. (10 pts)

c. Compare the variance of the two estimators. (10 pts)

Solution:



a. For Bl = nY(y), let’s derive find the distribution of Y{y):
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Hence, Y() ~ exp(g) = E(Yy)) = g = E(nY(y)) = 8. That means, /31 is unbiased for 8.

b.

n

B = BV = £ (=2 ) = LY B0 = - ni =0

Hence, Bg is unbiased for .

2

For 31, since Y{1) follows exponential distribution, Var(Y(y)) = % Hence Var(nY(;)) = B2.

2
For 32, Var(Y) = —. That is, variance of (35 is smaller than variance of 31 for n > 1.
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Extra credit question: Y7,...,Y,, are i.i.d. from U(6,6 4 1). Define 6, = Y(1). Adjust 6, so that it becomes an
unbiased estimator for € and compute the associated variance for the adjusted estimator. (10 pts)

Solution:

Firstly let’s find the distribution of 0::

FoW=n-1-y+0""  ye(@,0+1)



Hence,
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9 0+1 ) .
E<Y<1>>:/9 y - (L—y+0)""dy
0+1

0+1
= 1-y+0" + / 2y(1 —y+60)"dy  (Again, integration by parts)
0

0
20 2

— p?
Tl T D12

Now,
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